Compositek[™] comparison

The problems with traditional HDF such as swelling, chipping and unstable products are all things of the past. We created an alternative to HDF that has a higher surface density, 1/10 of the surface swelling and a much lower formaldehyde release compared to HDF. This makes for a more stable and higher quality end product.

Plywood

		,	
Surface density	++	+	+++
Density	++	+	+++
Thickness swelling	+	++	+++
Fire resistance	+	++	++
Surface Strength	+	+++	++
# of +	7+	9+	13+

Traditional HDF

Compositek

Compositek[™] **comparison**

The problems with traditional HDF such as swelling, chipping and unstable products are all things of the past. We created an alternative to HDF that has a higher surface density, 1/10 of the surface swelling and a much lower formaldehyde release compared to HDF. This makes for a more stable and higher quality end product.

Technical comparison	Traditional HDF	Plywood	Compositek
Surface density (kg/m ₃)	1200	700	2300
Density (kg/m ₃)	871	725	947
Thickness swelling (%)	10.5	8.2	1.4
Fire resistance (Typical fire class*)	Cfl-S1	Bfl-S1	Bfl-S1
Surface Strength (N/mm2)	2.0	3.1	2.4

